3.222 \(\int (a+b \cos (c+d x)) (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx\)

Optimal. Leaf size=114 \[ \frac{(a B+A b) \tan ^3(c+d x)}{3 d}+\frac{(a B+A b) \tan (c+d x)}{d}+\frac{(3 a A+4 b B) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{(3 a A+4 b B) \tan (c+d x) \sec (c+d x)}{8 d}+\frac{a A \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

[Out]

((3*a*A + 4*b*B)*ArcTanh[Sin[c + d*x]])/(8*d) + ((A*b + a*B)*Tan[c + d*x])/d + ((3*a*A + 4*b*B)*Sec[c + d*x]*T
an[c + d*x])/(8*d) + (a*A*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((A*b + a*B)*Tan[c + d*x]^3)/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.178587, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {2968, 3021, 2748, 3767, 3768, 3770} \[ \frac{(a B+A b) \tan ^3(c+d x)}{3 d}+\frac{(a B+A b) \tan (c+d x)}{d}+\frac{(3 a A+4 b B) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{(3 a A+4 b B) \tan (c+d x) \sec (c+d x)}{8 d}+\frac{a A \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sec[c + d*x]^5,x]

[Out]

((3*a*A + 4*b*B)*ArcTanh[Sin[c + d*x]])/(8*d) + ((A*b + a*B)*Tan[c + d*x])/d + ((3*a*A + 4*b*B)*Sec[c + d*x]*T
an[c + d*x])/(8*d) + (a*A*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((A*b + a*B)*Tan[c + d*x]^3)/(3*d)

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x)) (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx &=\int \left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx\\ &=\frac{a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac{1}{4} \int (4 (A b+a B)+(3 a A+4 b B) \cos (c+d x)) \sec ^4(c+d x) \, dx\\ &=\frac{a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+(A b+a B) \int \sec ^4(c+d x) \, dx+\frac{1}{4} (3 a A+4 b B) \int \sec ^3(c+d x) \, dx\\ &=\frac{(3 a A+4 b B) \sec (c+d x) \tan (c+d x)}{8 d}+\frac{a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac{1}{8} (3 a A+4 b B) \int \sec (c+d x) \, dx-\frac{(A b+a B) \operatorname{Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac{(3 a A+4 b B) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{(A b+a B) \tan (c+d x)}{d}+\frac{(3 a A+4 b B) \sec (c+d x) \tan (c+d x)}{8 d}+\frac{a A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac{(A b+a B) \tan ^3(c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.583825, size = 85, normalized size = 0.75 \[ \frac{3 (3 a A+4 b B) \tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \sec (c+d x) \left (8 (a B+A b) (\cos (2 (c+d x))+2) \sec (c+d x)+6 a A \sec ^2(c+d x)+9 a A+12 b B\right )}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sec[c + d*x]^5,x]

[Out]

(3*(3*a*A + 4*b*B)*ArcTanh[Sin[c + d*x]] + Sec[c + d*x]*(9*a*A + 12*b*B + 8*(A*b + a*B)*(2 + Cos[2*(c + d*x)])
*Sec[c + d*x] + 6*a*A*Sec[c + d*x]^2)*Tan[c + d*x])/(24*d)

________________________________________________________________________________________

Maple [A]  time = 0.076, size = 171, normalized size = 1.5 \begin{align*}{\frac{aA \left ( \sec \left ( dx+c \right ) \right ) ^{3}\tan \left ( dx+c \right ) }{4\,d}}+{\frac{3\,aA\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{8\,d}}+{\frac{3\,aA\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{8\,d}}+{\frac{2\,aB\tan \left ( dx+c \right ) }{3\,d}}+{\frac{aB\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}}+{\frac{2\,Ab\tan \left ( dx+c \right ) }{3\,d}}+{\frac{Ab\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}}+{\frac{Bb\tan \left ( dx+c \right ) \sec \left ( dx+c \right ) }{2\,d}}+{\frac{Bb\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^5,x)

[Out]

1/4*a*A*sec(d*x+c)^3*tan(d*x+c)/d+3/8*a*A*sec(d*x+c)*tan(d*x+c)/d+3/8/d*a*A*ln(sec(d*x+c)+tan(d*x+c))+2/3/d*a*
B*tan(d*x+c)+1/3/d*a*B*tan(d*x+c)*sec(d*x+c)^2+2/3/d*A*b*tan(d*x+c)+1/3/d*A*b*tan(d*x+c)*sec(d*x+c)^2+1/2/d*B*
b*tan(d*x+c)*sec(d*x+c)+1/2/d*B*b*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.08998, size = 220, normalized size = 1.93 \begin{align*} \frac{16 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a + 16 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A b - 3 \, A a{\left (\frac{2 \,{\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, B b{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/48*(16*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*a + 16*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*b - 3*A*a*(2*(3*sin(d*
x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x +
 c) - 1)) - 12*B*b*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.41719, size = 352, normalized size = 3.09 \begin{align*} \frac{3 \,{\left (3 \, A a + 4 \, B b\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (3 \, A a + 4 \, B b\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (16 \,{\left (B a + A b\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (3 \, A a + 4 \, B b\right )} \cos \left (d x + c\right )^{2} + 6 \, A a + 8 \,{\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/48*(3*(3*A*a + 4*B*b)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(3*A*a + 4*B*b)*cos(d*x + c)^4*log(-sin(d*x +
 c) + 1) + 2*(16*(B*a + A*b)*cos(d*x + c)^3 + 3*(3*A*a + 4*B*b)*cos(d*x + c)^2 + 6*A*a + 8*(B*a + A*b)*cos(d*x
 + c))*sin(d*x + c))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.36246, size = 410, normalized size = 3.6 \begin{align*} \frac{3 \,{\left (3 \, A a + 4 \, B b\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \,{\left (3 \, A a + 4 \, B b\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) + \frac{2 \,{\left (15 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 24 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 24 \, A b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 12 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 9 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 40 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 40 \, A b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 12 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 9 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 40 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 40 \, A b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 12 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 15 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 24 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 24 \, A b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 12 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/24*(3*(3*A*a + 4*B*b)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*A*a + 4*B*b)*log(abs(tan(1/2*d*x + 1/2*c) -
1)) + 2*(15*A*a*tan(1/2*d*x + 1/2*c)^7 - 24*B*a*tan(1/2*d*x + 1/2*c)^7 - 24*A*b*tan(1/2*d*x + 1/2*c)^7 + 12*B*
b*tan(1/2*d*x + 1/2*c)^7 + 9*A*a*tan(1/2*d*x + 1/2*c)^5 + 40*B*a*tan(1/2*d*x + 1/2*c)^5 + 40*A*b*tan(1/2*d*x +
 1/2*c)^5 - 12*B*b*tan(1/2*d*x + 1/2*c)^5 + 9*A*a*tan(1/2*d*x + 1/2*c)^3 - 40*B*a*tan(1/2*d*x + 1/2*c)^3 - 40*
A*b*tan(1/2*d*x + 1/2*c)^3 - 12*B*b*tan(1/2*d*x + 1/2*c)^3 + 15*A*a*tan(1/2*d*x + 1/2*c) + 24*B*a*tan(1/2*d*x
+ 1/2*c) + 24*A*b*tan(1/2*d*x + 1/2*c) + 12*B*b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d